YOUR EPD ENVIRONMENTAL PRODUCT DECLARATION Sapa TIGAL PREMIUM Sliding door 1 leaf + 1 fixed, 3-glass, coated

Sec.

YOUR EPD YOUR PRODUCT CARBON FOOTPRINT

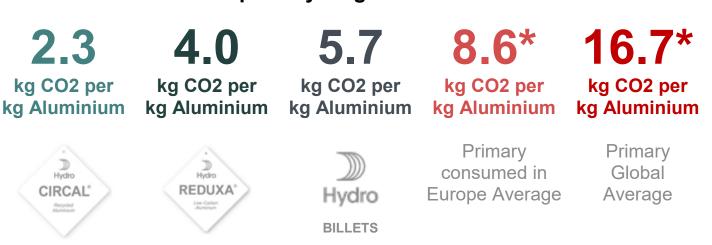
(GWP > Global Warming Potential)

of the aluminium used in this project is CIRCAL

CIRCAL 75R = 2.3 kg CO2 per kg Aluminium

Hydro CIRCAL is a range of products made with recycled, post consumer scrap. Through the use of recycled content we reduce energy use drastically while still being able to offer high quality products. We can always guarantee a CO2 footprint below 2.3 kg CO2 per 1 kg Aluminium produced with Hydro CIRCAL.

Hydro is today the only producer in the world capable of supplying prime quality, end-of-life, recycled Aluminium


of the Aluminium used in this project is REDUXA*

REDUXA 4.0 = 4 kg CO2 per kg Aluminium Hydro REDUXA is our series of low carbon aluminium. Through the use of renewable energy sources like hydro power we reduce the carbon footprint per kg aluminium to less than a fourth of the global average. The result is the world's lowest carbon aluminium to date

3% of the Aluminium used in this project is Hydro **Primary Billets**

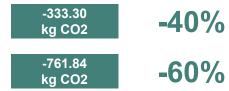
Aluminium CO2 Footprint by Origin

EPD >> YOUR PROJECT DETAILS YOUR PRODUCT CARBON FOOTPRINT

YOUR PRODUCT

(GWP > Global Warming Potential)

By using our solutions on this project, you reduce by:



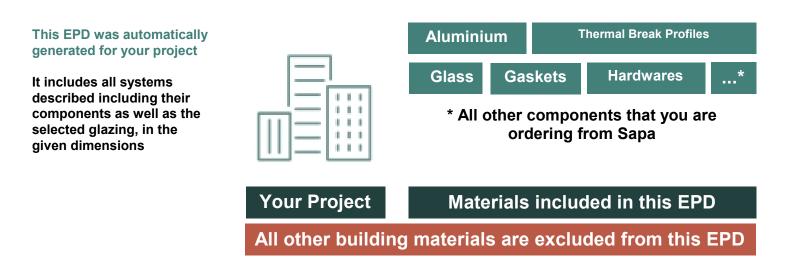
DID YOU KNOW?

You can ask your sales expert to have this project exclusively in CIRCAL to reduce even more the carbon footprint of your building systems

If you decide to use exclusively CIRCAL on this project, you reduce by:

The carbon footprint of your systems, compared to using primary Aluminium consumed in Europe

The carbon footprint of your systems, compared to using primary Aluminium global average


*Europe = 8.6 kg CO2 / kg Aluminium = primary Aluminium used in Europe (cradle to gate). European Aluminium 2018 report

**Global average: 16.7 kgCO2e / kg (Source: IAI 2018 report based on 2015 data)

EPD HOW TO READ IT

Your EPD is generated by IBU (IBU - Institut Bauen und Umwelt e.V.), verified by an independant third party according to ISO 14025. The CEN standard EN 15804 serves as the core PCR

SCOPE OF YOUR EPD

	A1: RAW MATERIAL SUPPLY	A2: TRANSPORT	A3: MANUFACTURING	
PRODUCT STAGE	Raw material:Aluminium,Transport of the AluminiumThermal break profiles,billets and all othergaskets, hardware, glass,components to ourproduction plant		Aluminium extrusion and production of our systems	
CONSTRUCTION	A4: TRANSPORT FROM	I OUR PLANT TO YOU	A5: ASSEMBLY	
STAGE	Delivery of even eventeries and of the eventeries to view felories then			
USE STAGE		ENANCE, REPAIR, REPLACEN RATIONAL ENERGY & WATEI		
END OF LIFE	C1 TO C2: DE-CONSTRUCTIO	C3 & C4: WASTE PROCESSING & DISPOSAL		
STAGE	Deconstruction & demolition of t the waste to the waste sorting p		Waste sorting and disposal of our end of life systems	
BENEFITS & LO	ADS BEYOND THE SYSTEM BO	UNDARYS REUSE	RECOVERY - RECYCLING POTENTIAL	

Is included in your EPD

Environmental product declaration Summarized EPD

Declaration owner: Hydro Building Systems Germany GmbH Construction project: EPD - Rapport Publisher: Hydro Building Systems Sweden AB

Date of issue: 13/11/2023

The Summarized EPD includes the following listed products						
Declaration number	Declared product	Declared unit (mm)				
Sapa TIGAL PREMIUM Sliding door 1 leaf + 1 fixed, 3-glass, coated	K.EPD_Rapport.11.13.2023.1.26.14 PM	2,400 x 2,400				

LCA: Results

The results of the impact assessment, resource use and waste and other output streams are shown below

The results are calculated from the values of the individual EPDs. SPECIFICATION OF THE SYSTEM LIMITS (X = INCLUDED IN LIFE CYCLE ASSESSMENT, MND = MODULE NOT DECLARED)

PRODUCT STAGE			ON PR	IRUCTI OCESS AGE		USE STAGE			EN	D OF LI	FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARYS			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х

RESULTS OF THE LIFE CYCLE ASSESSMENT ENVIRONMENTAL IMPACT:

Parameter Parameter		Unit	A1-A3	A4	C3	C4	D
GWP	Global warming potential	[kg CO ₂ -Eq.]	505.51	12.22	41.99	2.42E-01	-63.69
ODP	Depleting the stratospheric ozone layer	[kg CFC ₁₁ -Eq.]	6.89E-06	0.00	5.00E-07	4.56E-15	-2.53E-06
AP	Acidification potential of soil and water	[kg SO ₂ -Eq.]	3.34E00	0.03	6.22E-02	8.38E-05	-3.07E-01
EP	Eutrophication	[kg (PO ₄) ³ Eq.]	3.21E-01	0.01	1.46E-02	2.34E-04	-1.81E-02
POCP	Forming potential for tropospheric ozone	[kg Ethen-Eq.]	-1.63E-01	-0.01	3.06E-03	6.10E-05	-2.33E-02
ADPE	Potential for the abiotic degradation of non-fossil resources	[kg Sb-Eq.]	1.02E-02	0.00	8.61E-05	4.46E-09	-7.44E-03
ADPF	Potential for the abiotic degradation of fossil fuels	[MJ]	7,564.61	166.54	82.02	2.41E-01	-693.80

RESULTS OF THE LIFE CYCLE ASSESSMENT RESOURCE ACCOUNT:

Parameter	Parameter	Unit	A1-A3	A4	C3	C4	D
PERE	Renewable primary energy as an energy source	[MJ]	849.23	9.21	1.01E01	1.53E-02	-146.44
PERM	Renewable primary energy to the material use	[MJ]	0.56	0.00	0.00	0.00	0.00
PERT	Total reneweable primary energy	[MJ]	849.79	9.21	1.13E01	2.18E-02	-283.24
PENRE	Non-renewable primary energy as an energy source	[MJ]	6,326.83	166.54	470.77	1.98E-01	-365.50
PENRM	Non-renewable primary enerhy to the material use	[MJ]	382.58	0.00	-376.18	0.00	0.00
PENRT	Total non-renewable primary energy	[MJ]	6,709.48	166.54	94.59	2.50E-01	-867.80
SM	Use of secondary materials	[kg]	102.27	0.00	0.00	0.00	0.00
RSF	Renewable secondary fuels	[MJ]	0.00	0.00	0.00	0.00	0.00
NRSF	Non-renewable secondary fuels	[MJ]	0.00	0.00	0.00	0.00	0.00
FW	Use of freshwater resources	[m³]	1.94E00	0.02	1.17E-01	3.91E-05	-5.82E-01

DEGITI TO NETTEE OVOL	E ASSESSMENT OUTPUT RIVER	S AND WASTE CATECODIES:
REJULIJ OF LIFE GIGL		S AND WASTE CATEGORIES.

Parameter	Parameter	Unit	A1-A3	A4	C3	C4	D
HWD	Hazardous waste of landfill	[kg]	5.20E-02	0.00	3.17E-01	1.92E-09	3.13E-02
NHWD	Discarded non-hazardous waste	[kg]	83.28	0.01	6.18E01	2.50E00	-19.17
RWD	Discarded radioactive waste	[kg]	1.39E-01	0.00	1.16E-03	3.65E-06	-4.54E-02
CRU	Components for reuse	[kg]	0.00	0.00	0.00	0.00	0.00
MFR	Materials for recycling	[kg]	0.00	0.00	47.97	0.00	238.95
MER	Materials for the energy recovery	[kg]	0.00	0.00	1.39	0.00	0.00
EEE	Exported electrical energy	[MJ]	0.14	0.00	49.76	7.26	0.00
EET	Exported thermal energy	[MJ]	0.28	0.00	89.89	12.98	0.00

LCA: Scenarios and technical information

(according table chapter 4)

The following informations are basis fort he declared modules and products in this summary EPD:

Transport to construction site (A4)					
Designation	Value	Unit			
Liters of fuel					
Train (electric)	0.01158	l / 100 km			
Plane (kerosine)	0.42164	I / 100 km			
40 t truck (Diesel)	0.00165	l / 100 km			
7,5 t truck (Diesel)	0.00591	l / 100 km			
22 t truck (Diesel)	0.00231	l / 100 km			
Ship (heavy heating oil)	0.00040	l / 100 km			
Transport distance					
Train	0.00	km			
Plane	0.00	km			
40 t truck	0.00	km			
7,5 t truck	0.00	km			
22 t truck	500.00	km			
Ship	0.00	km			
Utilisation (including empty runs)					
Train	51	%			
Plane	61	%			
40 t truck	55	%			
7,5 t truck	40	%			
22 t truck	66	%			
Ship	48	%			
Volume utilisation factor	1	-			

Transport to construction site (A4)

*) The transport distance indicates the easy distance from the place of manufacture to he construction site.

End of life cycle (C1-C4)

Designation	Value	Unit
Seperatly collected waste type	251.12	kg
Collected as mixed construction waste	49.36	kg
For reuse	0.00	kg
For recycling (D)	281.93	kg
For energy recovery (C3)	16.47	kg
For landfilling (C4)	4.14	kg
For thermal utilisation (C4)	0.00	kg

Listing of the raw materials and the auxilary materials

(according table chapter 2.5)

Designation	Value	Unit
EN AW-6060	1.33	kg
A1-12H	0.14	kg
34CrMo4	0.03	kg
ZP2	0.04	kg
EN AC-46100	0.16	kg
X6CrNi18-10	0.49	kg
TPV	0.11	kg
PA66 GF25	7.28	kg
EPDM	2.68	kg
PA66	0.79	kg
Miscellaneous	3.97	kg
PA6	0.03	kg
EPDM Foam	0.01	kg
CIRCAL 75	51.24	kg
Pulverbeschichtung	1.77	kg
REDUXA	0.17	kg
Float glass	227.98	kg
Argon	0.27	kg
PA66 GF25 RE	2.53	kg
Eloxierung	0.00	kg
ABS	1.71	kg
PP	0.06	kg
Total weight	302.80	kg